3.29.81 \(\int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx\) [2881]

3.29.81.1 Optimal result
3.29.81.2 Mathematica [C] (verified)
3.29.81.3 Rubi [A] (verified)
3.29.81.4 Maple [A] (verified)
3.29.81.5 Fricas [C] (verification not implemented)
3.29.81.6 Sympy [F]
3.29.81.7 Maxima [F]
3.29.81.8 Giac [F]
3.29.81.9 Mupad [F(-1)]

3.29.81.1 Optimal result

Integrand size = 28, antiderivative size = 156 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {6 \sqrt {1-2 x}}{7 \sqrt {2+3 x} (3+5 x)^{3/2}}-\frac {1340 \sqrt {1-2 x} \sqrt {2+3 x}}{231 (3+5 x)^{3/2}}+\frac {89020 \sqrt {1-2 x} \sqrt {2+3 x}}{2541 \sqrt {3+5 x}}-\frac {17804 E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{77 \sqrt {33}}-\frac {536 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{77 \sqrt {33}} \]

output
-17804/2541*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2) 
-536/2541*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+6 
/7*(1-2*x)^(1/2)/(3+5*x)^(3/2)/(2+3*x)^(1/2)-1340/231*(1-2*x)^(1/2)*(2+3*x 
)^(1/2)/(3+5*x)^(3/2)+89020/2541*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(3+5*x)^(1/2)
 
3.29.81.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.31 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.60 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2 \left (\frac {\sqrt {1-2 x} \left (253409+823580 x+667650 x^2\right )}{\sqrt {2+3 x} (3+5 x)^{3/2}}+2 i \sqrt {33} \left (4451 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-4585 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right )}{2541} \]

input
Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 
output
(2*((Sqrt[1 - 2*x]*(253409 + 823580*x + 667650*x^2))/(Sqrt[2 + 3*x]*(3 + 5 
*x)^(3/2)) + (2*I)*Sqrt[33]*(4451*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/ 
33] - 4585*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])))/2541
 
3.29.81.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.12, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {115, 27, 169, 27, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {1-2 x} (3 x+2)^{3/2} (5 x+3)^{5/2}} \, dx\)

\(\Big \downarrow \) 115

\(\displaystyle \frac {2}{7} \int \frac {5 (8-9 x)}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}}dx+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {10}{7} \int \frac {8-9 x}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}}dx+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {10}{7} \left (-\frac {2}{33} \int \frac {649-402 x}{2 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {10}{7} \left (-\frac {1}{33} \int \frac {649-402 x}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {10}{7} \left (\frac {1}{33} \left (\frac {2}{11} \int \frac {3 (4451 x+2818)}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {8902 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {10}{7} \left (\frac {1}{33} \left (\frac {6}{11} \int \frac {4451 x+2818}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {8902 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {10}{7} \left (\frac {1}{33} \left (\frac {6}{11} \left (\frac {737}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {4451}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )+\frac {8902 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {10}{7} \left (\frac {1}{33} \left (\frac {6}{11} \left (\frac {737}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {4451}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {8902 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {10}{7} \left (\frac {1}{33} \left (\frac {6}{11} \left (-\frac {134}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {4451}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {8902 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {134 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {6 \sqrt {1-2 x}}{7 \sqrt {3 x+2} (5 x+3)^{3/2}}\)

input
Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 
output
(6*Sqrt[1 - 2*x])/(7*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2)) + (10*((-134*Sqrt[1 - 
2*x]*Sqrt[2 + 3*x])/(33*(3 + 5*x)^(3/2)) + ((8902*Sqrt[1 - 2*x]*Sqrt[2 + 3 
*x])/(11*Sqrt[3 + 5*x]) + (6*((-4451*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7] 
*Sqrt[1 - 2*x]], 35/33])/5 - (134*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sq 
rt[1 - 2*x]], 35/33])/5))/11)/33))/7
 

3.29.81.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 115
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2 
*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.81.4 Maple [A] (verified)

Time = 1.33 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.40

method result size
default \(-\frac {2 \sqrt {2+3 x}\, \sqrt {1-2 x}\, \left (43230 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-44510 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+25938 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-26706 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-1335300 x^{3}-979510 x^{2}+316762 x +253409\right )}{2541 \left (3+5 x \right )^{\frac {3}{2}} \left (6 x^{2}+x -2\right )}\) \(219\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (\frac {-\frac {540}{7} x^{2}-\frac {54}{7} x +\frac {162}{7}}{\sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}+\frac {22544 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{17787 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {35608 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{17787 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{33 \left (x +\frac {3}{5}\right )^{2}}+\frac {-\frac {16100}{121} x^{2}-\frac {8050}{363} x +\frac {16100}{363}}{\sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(247\)

input
int(1/(2+3*x)^(3/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/2541*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(43230*5^(1/2)*7^(1/2)*EllipticF((10+1 
5*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)-445 
10*5^(1/2)*7^(1/2)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2 
)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)+25938*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x) 
^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-26706*5^(1/ 
2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticE((10+15*x)^ 
(1/2),1/35*70^(1/2))-1335300*x^3-979510*x^2+316762*x+253409)/(3+5*x)^(3/2) 
/(6*x^2+x-2)
 
3.29.81.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.69 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2 \, {\left (45 \, {\left (667650 \, x^{2} + 823580 \, x + 253409\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 151247 \, \sqrt {-30} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 400590 \, \sqrt {-30} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{114345 \, {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )}} \]

input
integrate(1/(2+3*x)^(3/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="fricas 
")
 
output
2/114345*(45*(667650*x^2 + 823580*x + 253409)*sqrt(5*x + 3)*sqrt(3*x + 2)* 
sqrt(-2*x + 1) - 151247*sqrt(-30)*(75*x^3 + 140*x^2 + 87*x + 18)*weierstra 
ssPInverse(1159/675, 38998/91125, x + 23/90) + 400590*sqrt(-30)*(75*x^3 + 
140*x^2 + 87*x + 18)*weierstrassZeta(1159/675, 38998/91125, weierstrassPIn 
verse(1159/675, 38998/91125, x + 23/90)))/(75*x^3 + 140*x^2 + 87*x + 18)
 
3.29.81.6 Sympy [F]

\[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {1}{\sqrt {1 - 2 x} \left (3 x + 2\right )^{\frac {3}{2}} \left (5 x + 3\right )^{\frac {5}{2}}}\, dx \]

input
integrate(1/(2+3*x)**(3/2)/(3+5*x)**(5/2)/(1-2*x)**(1/2),x)
 
output
Integral(1/(sqrt(1 - 2*x)*(3*x + 2)**(3/2)*(5*x + 3)**(5/2)), x)
 
3.29.81.7 Maxima [F]

\[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {1}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate(1/(2+3*x)^(3/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="maxima 
")
 
output
integrate(1/((5*x + 3)^(5/2)*(3*x + 2)^(3/2)*sqrt(-2*x + 1)), x)
 
3.29.81.8 Giac [F]

\[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {1}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate(1/(2+3*x)^(3/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="giac")
 
output
integrate(1/((5*x + 3)^(5/2)*(3*x + 2)^(3/2)*sqrt(-2*x + 1)), x)
 
3.29.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {1}{\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^{3/2}\,{\left (5\,x+3\right )}^{5/2}} \,d x \]

input
int(1/((1 - 2*x)^(1/2)*(3*x + 2)^(3/2)*(5*x + 3)^(5/2)),x)
 
output
int(1/((1 - 2*x)^(1/2)*(3*x + 2)^(3/2)*(5*x + 3)^(5/2)), x)